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1. INTRODUCTION

The classical Weierstrass Theorem [12] states that one may approximate
a function in era, b] arbitrarily closely in sup norm by a polynomial. The
classical Jackson Theorem [7]tefines the Weierstrass Theorem by obtaining
quantitative rates of convergence by polynomials to a continuous function.

In this paper we obtain Jackson type results for two settings in which
Weierstrass theorems already exist. We first consider Yamabe's theorem [18J,
which goes back to Walsh [16], and has been extended more recently by
Deutsch [2] and Singer [13].

THEOREM (YAMABE). Let M be a dense convex subset of a real normed
linear space X, and suppose that {Xi*}:l c: X*. Then,for each x E X and E > 0,
there is an m E M such that II x - mil < E and xi*(m) = Xi*(X) (i = 1,..., n).

In Section 2 we state and prove a Jackson Theorem version of Yamabe's
theorem, which we call the bounded linear functional theorem.

The second case we treat is the so-called SAIN approximation problem,
in which one requires the additional condition II m II = II x II in the conclusion
of Yamabe's theorem. This problem had its genesis in a result due to Wolibner
[17]. Wolibner's result was generalized by Deutsch and Morris [3-5], who
also gave the name SAIN to this type of approximation problem. More
recently, McLaughlin and Zaretzki [11], Holmes and Lambert [6], and
Lambert [9, 10] have contributed to the still incomplete characterizations
obtained by Deutsch and Morris [4].

In Section 3 we consider the slightly relaxed condition /I m II :(: II x II, which
we term "weak SAIN" approximation, and obtain some Jackson type
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theorems for normed linear spaces. In Section 4 we quickly specialize to
function spaces C(T), T compact Hausdorff, and obtain a general Jackson
type theorem for SAIN approximation when the bounded linear functionals
are all point evaluations. We also observe that one is naturally led to the
open question of considering arbitrary restricted range approximation [15]
in place of norm or weak norm preservation.

Although more general results than those which follow may be established
(see [8]), for simplicity we have assumed in this paper that we are approxi-
mating from closed subspaces only. .

2. THE BOUNDED LINEAR FUNCTIONAL THEOREM

We let X be an arbitrary normed linear space, and consider an increasing
sequence of closed linear subspaces {Mk}~~lof Xwhose union M is dense in X.
We suppose that {Xi *}:=1 C X* and let X be an arbitrary fixed element of X.
We let o.,(x) = o(x; M k) denote the deviation of the elementx from the
subspace M k • Without loss of generality in the following, the linear
functionals Xi* may always be assumed to be linearly independent.

THEOREM 2.1. There exist a constant C and a positive integer N such that
for every x in X and each k ? N there is an mk E M k satisfying

(1) xi*(mk) = Xi*(X) (i = 1,... , n),

(2) II x - mk II ~ C Ok(X).

Proof Choose r1 , •.. , rn in M such that xi*(rj) = 0ij . Choose N so that
rj E M N (j = 1,... , n) and set C = 2(1 + L~ II Xj* I1II rj ID. Let x E X and
k ? N. Choose Sk E M!c such that II x - Sk II ~. 2o.,(x) and set

n

mk = Sk + L x/ex - Sk) rj ,
j~l

then mk E M k , xi*(mk) = Xi*(X) (i = 1,... , n), and

n

II x - mk II ~ II x - Sk II + L I x/ex - sk)111 rj II
j=l

n

~ II x - Sk II + I II X/ 1111 rj [III x - Sk II
j~l

Q.E.D.
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3. WEAK SAIN ApPROXIMATION
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We now consider the situation in which the constraint I! m/c II ~ II x Ii is
added to the interpolating constraints in the bounded linear functional
theorem. We observe that ifwe have no interpolating side conditions imposed,
then the result is straightforward.

THEOREM 3.1. For each x in X and k ;?o 1 there exists m/c E M/c such that

(1) Ilm/cil ~ Ilxll
(2) I! x - m/c II ~ 3o/c(x).

Proof If x E M/c, choose m", = x. If x E X\M", , choose Sl' E M/c so that
Ii x - SIc II ~ !oix). If II SIc II ~ II x II, take m/c = s",. If II SIc Ii > Ii x Ii, let
m/c = AS/c, where A is any number satisfying

max{O, 1 - (3/2 I! Sk 10 o/c(x)} ~ A ~ II x II/II SIc If·

Then m", E M", , II m", II ~ II x II, and

Ii x - m" II = II x - SIc + (l - A) SIc II ~ II x - Sk II + (l ­

~ !0Ic(X) + !(\(x) = 30",(x).

SIc II
Q.E.D.

The constant 3 in Theorem 3. I may actually be replaced by any constant
strictly bigger than 2 (see [8]).

If we have nonempty interpolatory conditions together with weak norm
preservation to satisfy, the theory is no longer as simple, and in general one
does not even have a Weierstrass Theorem (see [4] or Example 3.4 below),
However, the following theorem gives a sufficient condition on the bounded
linear functionals involved.

THEOREM 3.2. Suppose there is an mE M such that II m Ii < II x II and
xi*(m) = Xi*(X) (i = 1'00" n). Then there exist a constant C and a positive
integer N such that for every k ;?o N there is an m", E M k satisfying

(1) xi*(mk) = Xi*(X) (i = 1'00" n)

(2) II m/c I! < If x II
(3) Ii x - mk II ~ Cok(x).

Proof By the BLF Theorem there are CI and NI such that for every
k ;?o N 1 there exists ric E M k with

(i = 1'00" n), and

Let a = CII! m 11[/) x II - II m ill-I (so II m II = a(CI + ex)-lil X 10 and let
C = 3CI + 2ex. Since oix) -+ 0, we can choose an N 2 ;?o N I such that
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aOk(X) ~ II X II for k ~ N 2 • Choose N ~ N 2 so that mE M N • Given any
k ~ N, define

A _ (Cl + CI'.) oix)
k - II x II + Cloix)

and

II mk II ~ Ak II m II + (1 - Ak)11 rk II

~ Ak C
l
~ CI'. II x II + (1 - Ak)[11 x Ii + ClOk(X)]

cxo,,(x)11 x II
II x II + ClOk(X) + II x II - Cl'.Ok(X)

~ Cl'.Ok(X) + II x II - Cl'.Ok(X) = II x II,
and

II x - mk II = II Ak(x - m) + (1 - Ak)(x - rk)1I

~ Ak II x - mil + (1 - Ak) ClOk(X)

~ (Cl + CI'.) oix) 211 II + [II x II - Cl'.°k(X)] Co ( )
"" II x II + Cloix) x II x II + C10k(X) 1 k x

~ [C12 II x II + Cl'.2 II x II + II x II Cl ] '" ( ) = C'" ( )"" II x II Ok X ok X •

Q.E.D.

Remark. We observe [1, p. 38, Theorem 3] that the condition in
Theorem 3.2,

(A) :1m E M3 xi*(m) = Xi*(X) (i = 1,..., n) and II m II < II x II is equiv­
alent to the condition

(B) :IE > 0 such that IL:l Cl'.iX;*X I ~ 01 x II - E)II L:l Cl'.iXi* II holds
for all CI'. = (CI'.l , ... , Cl'.n) ERn.

Since (B) holds automatically in the case n = 1 for any nonextremal bounded
linear functional, we have the following as an immediate corollary:

THEOREM 3.3. Suppose I x*(x) I < II x* !II/ x II. Then there exist a constant
C and a positive integer N such that for all k ~ N there is an mk E M kfor which

(1) x*(mk) = x*(x),

(2) II mk II ~ II x II,
(3) II x - mk II ~ Cok(x).
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While Theorem 3.3 is not especially satisfying, it is best possible in two
senses. First, one need not have SAIN (and hence not weak SAIN [4,p. 358,
Lemma 2.3]) for one extremal bounded linear functional [4, p. 359,
Remark 2.2], and second one need not have SAIN for two nonextremal
bounded linear functionals [4, p. 359, Proposition 2.1]. For better results
we must impose stronger hypotheses. Even if we consider C[a, b] and poly­
nomials, however, by modifying an example of Deutsch and Morris [4, p. 366,
Remark 4.3] we can exhibit two nonextremal bounded linear functionals for
which one does not have SAIN.

Example 3.4. We let X = C[O, 1], and M = 9, where f!lJ is the set of
polynomials on [0, 1]. Let

X 2* = II dx,
l/Z

and let

f( ) - p,
x - 12 - 2x,

if °~ x ~ 1/2,
if 1/2 ~ x ~ 1.

Then IIfl! = II x l * II = 1, II X2* II = II x3 * II = t, and x 3* = xl * - x2*. In
particular, if p E9, II p 1/ = 1, is such that Xl *p = Xl*f = 1, X2*p = X2*f = !,
then x 3*p = t, so that lip II ~ IIfl! = 1 implies p = 1. Thus, IIf - p il = 1
and one does not have SAIN for Xl * and x z* on C[a, b] with the polynomials
as the dense subspace.

However, we observe that for X = C[a, b] and M = 9, if {X;*}~l are all
nonextremal point evaluations, then condition (B) holds trivially (or in any
case by [4, p. 362, Lemma 4.1]). Hence we have a second immediate coronary
to Theorem 3.2.

THEOREM 3.5. Suppose X = C(T), with T compact Hausdorff, and let
fE C(T). Suppose {Xi*};~l = {eaJ;~l are point evaluations on C(T) such that
1!(Xi)/ < IIfll (i = 1,..., n), then' there exist C and N such that for every
k ;;;: N, there is an mk E Mkfor which

(1) mk(xi ) = l(x;) (i = 1,..., n),

(2) II mk II ~llfll,

(3) Ilf - mk II '.'( COk(x).

4. SAIN ApPROXIMATION

We now consider the situation in which equality holds in the constraint
II mk II ~ II x II dealt with in section three. First we treat the case without
interpolatory side conditions.
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Q.E.D.

THEOREM 4.1. For each x in X there is an integer N so that for every k ~ N
there exists m/c E' M/c with II mk II = II x II and Ilx - mk II < 487cCx).

Proof The result is trivial if x E' MN for some N. Thus we may assume
x 1= M k for every k. In particular, 0 < 8/c(x) < II x II for every k. Choose N
so that 211 x 11-1 0k(X) < 1 for k ~ N. For each k ~ N, choose Yk E' Mk such
that II x - Yk II < 20k(x). Define

~ _ II Y/c II - II x II " k >: N
Ok - II x II lor:;/"

Clearly,

I 8 I ~ II Y/c - x II < 2
1
°1xk(X

I1
) < 1.

k "'" II xii

Set mk = (1 + 8k)-1 Y7c for every k ~ N. Then mk E' M k , II mk II = II x II, and

II Xk - m II = II x - Y7c + 8k(1 + 8/c)-1 Yk II
~ II x - Y7c II + lOki 11(1 + Ok)-l Y7c II
< 28ix) + I O/c I II x II < 407cCx).

We observe next that one has a SAIN result with the same bounds (up
to a constant) whenever one has a weak SAIN result:

THEOREM 4.2. Let x be in X and suppose that for each k ?: Nl there is
an Sk E' M k for which x/(s/c) = xi*(x) (i = 1,... , n) and II Sk II ~ II x II. Then
there are constants C and N such that for every k ?: N there exists mk E' M k

satisfying

(1) xi*(m/c) = Xi*(X) (i = 1,... , n)

(2) II mk II = II x II
(3) II x - mk II ~ C II x - Sk II·

Proof. If II SIc II = II x II for every k, take mk = SIc . Thus we may assume
II Sk II < II x II for some k. Choose Xo* E' X*, II XO* II = 1, so that Xo*(x) -II x /I.
If xo* = L:;=l OliXi* for some scalars Oli, then

n n

II x II = xo*(x) = L OliX/(X) = L OliX/(Sk) = XO*(Sk) ~ II Sk II,
i~l i~l

which is impossible. Hence the set {Xo*, Xl*,..., X n *} is linearly independent.
Thus we may choose m E' M such that Xo*(m) = 1 and xi*(m) = 0
(i = 1,..., n). Choose N?: Nl so that mE' M N • For each k ?: N choose
Ol/c ?: 0 such that II Sk + Ol/cm II = II x II. Setting mk = Sk + Ol/cm, it follows
that m/c E M/c , /I m/c II = II x II, and xi*(m/c) = Xi*(X) (i = 1,... , n). Also,

X*(Sk) + Ol/c = xo*(s/c + Olkm) ~ II SIc + Olkm II = II x II = xo*(x)
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II x - mk 1/ ~ II x - Sk 1/ + {Xk 1/ m II ~ (1 + II m 101/ x - Sk II·
Taking G = 1 + II m II completes the proof. Q.E.D.

As a corollary to Theorem 4.2 above we have that "Weak SAIN" approxi~

mation is equivalent to "SAIN" approximation in a Jackson Theorem (rate
of approximation) sense. If we combine Theorem 3.2 with Theorem 4.2
above we also get the following:

COROLLARY 4.3. Suppose there is an mE' M such that II m II < II x 1/ and
xi*(m) = x;*(x) (i = 1,... , n). Then there exist a constant C and a positive
integer N such that for every k ?: N there is an mk E' M k satisfying

(1) xi*(mk ) = Xi*(X) (i = 1,..., n)

(2) II mk 1/ = II x 1/

(3) II x - mk II ~ Gok(x).

On spaces C(T), T compact Hausdorff, it is known [4J that one has SAIN
jf M is a dense subalgebra of ceT) and the bounded linear functionals are
all point evaluations, while one need not have SAIN if the bounded linear
functionals are not all point evaluations, even if T = [a, b] and M = f!}J

(see example 3.4 above or [4]). We will thus assume the Xi* to be point
evaluations, x;* = et., t i E' T, for each i = 1,... , n henceforth. We will also
require some additio~al hypotheses on M to insure that one has SAIN.
Since we are interested in a Jackson Theorem rather than a Weierstrass
theorem, it is not unnatural to impose hypotheses on M via conditions on
the subspaces M k • It turns out sufficient for our purposes to require that
1 E' M and that mk E' M k implies mk2 E' M 2k for k sufficiently large. Note that
the second condition is slightly weaker than requiring M to be a graded
algebra, but that with the first condition, it is sufficient to guarantee that the
essential results of Section 4 of [4] hold, as one observes by examining the
proofs there, and that in particular there holds the following:

LEMMA 4.4. (Deutsch and Morris [4, p. 365, Corollary 4.1]). Suppose
that M is a dense subspace of C(T) containing the constant functions and the
square of any of its elements. Then for each f E' G(T), f ?: O. on T, each set
{tl , ... , In} in T, and each Tj > 0, there is an m E' M, m ?: °on T, satisfying

(1) met;) = f(t;) (i = 1,... , n)

(2) II m II = I/fll
(3) - m Ii < YJ.
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To handle a different case than that for which we will use Lemma 4.4 in
the proof of Theorem 4.7 below, we also require the following result, which
geometrically is closely allied to Lemma 4.4 itself, and in fact is derived
using it.

LEMMA 4.5. Suppose that M is a dense subspace of C(T) containing the
constant functions and the square of any of its elements. Suppose {ti}~=O are
distinct points of T. Then there exists a closed subset A of T, containing to
in its interior, and an m E M such that

(1) met) ~ 0 on A,

(2) m(to) = 0,

(3) 0 < met) ~ 1 on T\A,

(4) m(ti ) = 1 (i = 1,..., n).

Proof If n = 0, take m = 0 and A = T. If n > 0 consider
.Itk = {m E M; m(tj) = 0 for j oF k and there is an open subset B of T
containing every tj , j oF k, on which -1 < met) ~ 0 holds}. Suppose
mi , m2 E.Itk • Then mi + m2 E M, since M is a (linear) subspace of C(T).
Also, (mi + m2)(tj ) = ml(tj ) + m2(tj) = 0, for j oF k. Let BI , B2 be open
subsets of T containing the t j (j oF k) such that -1 < mi :(;; 0 holds on
Bi , i = 1,2, respectively. Let Ai = mi\(-lJ2, +00)) as a set function.
Since mi E C(T), Ai is an open subset of T, and since m;(tj ) = 0 for j oF k,
tj E Ai for i = 1,2. Let B = BI {'\ B2 {'\ Al {'\ A 2 • Then B is an open subset
of T which contains tj (j oF k). Moreover, -t < mi , m2 :(;; 0 on B, so that
-1 < mi + m 2 :(;; 0 on B, and thus mi + m2 E.Itk' Now suppose a E £!ll,
a> O. Let A' = m11«-1/a, +00)). Then A' is an open subset of T, and
tj E A' for j oF k. Let B = A' {'\ BI . Then B is an open subset of T containing
tj (j oF k). Since -lJa < mi :(;; 0 on B, -1 < amI :(;; 0 on B, so amI E.ltk .

Thus .Itk forms a convex cone. Furthermore, mi + mI
2 E.Itk whenever

mi E .Itk, since for t E BI ,

so that

on BI , so since (mi + mI2)(tj) = ml(tj) + mI2(tj) = 0 for j oF k,
m 1 + mI2 E.ltk .
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By Urysohn's Lemma, there is a gk E C(t) such that 0 ~ gk ~ 2 on
gk(tk) = 2, and gk(tj) = 0, for j i= k. By Lemma 4.4, there is an ric E M such
that °~ ric ~ 2 on T, rlc(tk) = 2, and rlcUj) = °for j =J= k. Then -ric E ."Itlc ,
implying -ric + rlc2 E A"!Ic' Let mk = (-rlt + rlc2)J2. Then mk E.#tlc'

mk(tk) = 1, and mlc(t) ~ 1 on T. Let s = 2::=1 mlc' Observe that s EM£: C(T)
and s is bounded by n on T. Also s(to) = 0 while s(tj) = 1 for j = 1,... , n. Let
BIc be an open subset of T containing tj (j =J= k) for which -1 < mlc(t) < O.
Let B' = n~=l B Ic . Then B' is open in T, contains to, and is disjoint from
t j for j = 1,... , n. Moreover mlc ~ 0 on B', so that s ~ 0 on B' also. Let
m' E M be such that m'(tj) = 0 for every j = 0, 1,... , n, 0 ~ m' ~ 1 on T,
and t ~ m' on T\B'. Choose a > ° so that s + am' ~ 1 on T. Let
m = s + exm'. Then mE M, mUo) = 0, m(tj) = 1 for} = 1,... , n, and m < 1
on T. Let A = m-1(( -00,0». Then A is a closed subset of T, contains B',
and °< met) ~ 1 on T\A. Since to EB' open, to is in the interior of A.

Q.E.D.

Putting the two previous lemmas together, we have the following:

LEMMA 4.6. Suppose that M is a dense subspace of C(T) containing the
constant functions and the square of any of its elements. Suppose that {ti}f=o
are distinct points of T and that U is an open neighborhood of to disjoint from
ti for every i =J= 0. Then there is an m E M such that

(1) mUo) = 1,

(2) m(ti ) = 0 for i =J= 0,

(3) met) ~ °on T\ U,

(4) m ~ 1 on T.

Proof By Lemma 4.5, there is an ri EM for which r;(ti ) = 0, rlty) = 1
for j =J= i, j = 0, 1, ..., n, rJt) ~ °in some open neighborhood Vi of t;,
and r; < 1 on T, for each i = 1,... , n. Let s = (2::=1 r;) - (n - 1). Then
S E M, s(to) = 1, set;) = 0 for every i = 1,... , n, set) ~ 0 in some open
neighborhood V containing t;, for i =J= 0, and s ~ 1 on T. By Urysohn's
Lemma, there is agE C(T) for which get) - 1 on A = T\(U u V), get;) = 0
for all i = 0, 1,... , nand °~ g ~ 1 on T. By Lemma 4.4, there is an rEM
for which r(ti ) = °for every i = 0, 1,... , n, 0 ~ r ~ 1 on T, and II g - r II < ;j;.
But s is bounded on A, so r > i on A implies there is an a > 0 such that
s - iXr ~ °on A. Let m = s - ar. Then mUo) = 1, while met;) = 0 for
each i = 1,..., n. Since -iXr ~ 0 on T, m = s - ar ~ S ~ 0 on V, and so
m < 0 on T\U = A u V. Finally m < s - ar ~ S < 1 on T. Q.E.D.

We introduce the following notation to simplify the statement and proof
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of our principle theorem. For a given set of bounded linear functiona1s

{Xi*};:l' we set

THEOREM 4.7. Suppose {Mk}~=l is an increasing sequence of closed linear
subspaces of C(T) satisfying

(a) its union M is dense in C(T),

(b) M contains the constant functions,

(c) mk E M k implies mk2E M2k for sufficiently large k.

Let t1 ,... , tn be n distinct points in T, and let f E C(T). Then there exist Nand C
so that for every k > N there is an mk E Mkfor which

(1) miti ) = f(t i ) (i = 1,... , n),

(2) II mk II = Ilfll,

(3) Ilf - mk II ~ C8 7c(f),

where

°k(l),
0[kI2J((llfll - ])1/2),

8k(l) = 0[7cI2]((llfll + f)1/2),
min{0[kI4](((21IflJ)1/2 - (11fll - f)1/2)1/2),
0[k/4J(((21Ifll)1/2 - Olfll + f)1/2)1/2)},

if p = q = 0,
if q = 0,
if p = 0,

otherwise.

Proof Let N2 be such that 1 E M N , and N3 '?: N2 such that mk E M k
2

implies mk2E M 2k for k '?: N3 • By Theorem 4.2 it is sufficient to prove the
weak SAIN result only. If n = 0, the result is Theorem 4.1, so assume n > 0.

Case I: p = q = 0. Then I!Ui)1 < Ilfll for all i = 1, ... , n, and the
result is Theorem 3.5.

Case II: p = n. We define the auxiliary function g E C(T) by
g = (11fll - f)1/2. Then get;) = (11fll - 1(ti))1/2 = °for each i = 1,... , n. By
Case I, there exist C1 and N1 such that for every k '?: N1 there is an S7c E M k
for which Sk(ti ) = g(ti)(i = 1,... ,n), II Sk II = II g II, and II g - Sk II ~ C1oig) with
C = C1 . Let N = max[2N1 , N 3], and suppose k '?: N. Set m2k = Ilfll - SHt

Then m2k E M 2k , m2k(ti) = Ilfll, and II m2k II ~ IlflI, since 0 ~ Sk2 ~ 211fll
implies -llfll ~ Sk2

- Ilfll ~ Ilfll. Also,

Ilf - m2k II = 11(llfll - g2) - (!If II - slc2)[1
= II Slc

2
- g211

~ II Sk + gj[ II Sic - g II
~ 2(21Ifl[)1/211 g - Sic II

~ 2(21Ifl[)1/2 C101c(g).
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If g E M k , then II g - Sk II < ?] implies III - (ill/I - Sk2)/i < 21) g II YJ so that
fE M 2k , so by taking N sufficiently large,jE M k if g E M k . If g ¢ M k , then

implying

Hence, for every k :;?: N, k even, 111- nIk I) ~ CO[k/2JWI/II - f)11 2), while
if k = 2m' + 1 ~ N is odd, then [k(2J = nI' = ((k - 1)(2J and
M 2m'+l d M 2m" so that III - nIk II·~ C0[lc/2]((lI/ii - f)1/2) holds for arbitrary
k ~ (N + 1), by setting m2m'+l = m2m' for any index k which is odd.

Case III: 0 < p < n, q = O. Without loss of generality, suppose
lua = 1I/i! for i = 1,... , p. By Lema 4.4, for each} = 1,... , n - p, there is
an fj E M for which rltp +j ) = 1, rlt;) - 0 (i =1= p + j), and 0 ~ fj ~ 1.
Let N4 ~ N3 be such that f; E M N for all} = 1,... , n - p. Let

4

E = min[[lti! -If(t;)I;} = p + 1,,.., n],

and choose pairwise disjoint open sets {Ujn=i such that (1) t j E Uj , and
(2) !f(t) - f(t;)! < E for t E U; . By Urysohn's Lemma there is a g; EO C(T)
such that g(tp +j ) = 1, get) =0 on T\Uj , and 0 ~ gj ~ 1 on T. By
Lemma 4.6, there is a qj EO M such that qj(tp +j ) = 1, qj(t;) = 0 for i =1= p + j,
q; ~ 0 on T\Uj , and q; ~ 1 on T. Let N5 ~ N4 be such that q; EO M N • for
every } = 1,..., n - p. Let N6 ~ N5 be such that k ~ N 6 implies
CO[kI2JWitll - f)I/2) < El, where

min{lltll - I minUet»~!, E(3}
E - ----=~~-'----=~'--~'---

1 - n n~~p {(I + II rj 10(1 + II qj 101! fj lill qj Ii}

By case II, there exist C1 and N I such that for every k ~ N1 there is an
Sk E M k for which Sk(t;) = f(t;) (i = 1,... , p), !i Sk II = and /il - Sk II ~
CIO[k/2]((Iltll - 1)1/2). If Sk(tp+l) > f(tp+l)' choose (Xk so that

(Sk + (Xkrl)(tp+1) = f(tp+!),

with 0 > (Xk ~ -III - Sk II. Let S£I) = Sk + (Xkrl' Then s£ll(t;) = fU;) for
i = 1, ...,p + 1,

and
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If S",,(tV+1) < !(t1WJ, choose 0/."" so that (s"" + Ol""ql)(tV+l) = !(t1l+1)' with
o < 0/."" ~ II/ - s"" II, and let si/l = S"" + OlIQl' Then Sk11(ti) = !(ti) for
i = 1,... , p + 1, II SkI) II = II s"" + OlkQl11 ~ II/I!, and

[1/ - S~I) II ~ II/ - s"" II + 0/."" II Qlll ~ (1 + II qll!)ll/ - s"" II·

If s",,(tP+1) = /(tV+l)' let S~11 = S"" •

At the general step, 1 < j ~ n - p, if sJi-l l (t1J+ff) > !(t1J+j), choose Olk
so that (SJj-l) + Olkrj)(tp+j) = !(!1I+i) and 0 > Olk ~ -II/ - sJj-11 1l. Then
Olk ~ -II/ - S~-11 II ~ -2H n::~ (1 + II qi 1011/ - Sk II, by the inductive
step. Set sJi) = S~-11 + Olkrj . Then s~)(tV+j) = !(tv+j), while

for i = 1,...,p + j - 1,

by inductive hypothesis again. Also, Olkrj ~ 0 implies S~l ~ S~-11 ~ II/II
by the inductive step, while

n-v
Ol""rj ~ -2j-1 n {(I + IIqi 10} El

i=1

>- _ II/II - I min(f)1
/' n2n- p

-
j n;,:.t {(1 + II Qi 10}

>- _ H/II - I min(f)j
/' n

while by the inductive step

S~-I) ~ -II/II + (n - j)(II/11 - I min(f)l)jn ~ -II/II,

so that

s~) ~ -III/I + (n - j - 1)(///11 - I min(f)I)/n ~ -II/II,

and hence II SJjI II ~ II/II. Finally

II / - skj) II ~ fI / - skH
) II + I IXk I

~ 211/ - S~-I) II

i-I

~ 2 . 2j-1 IT [(1 + II qi II)JII1 - Sk 11
i=1

j

~ 2j n[(1 + II Qi 11)]11/ - Sk II
;=1
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If S)/-1)(tp+j) < l(tp+j), choose ak so that (S)/-l) + akqj)(tp+j) = l(tp+j) and
o < !Xk ~ /II - S)/-1) /I; and set 4j

) = S)/-1) + akqj· Then 81/)(ti) = lUi)
for i = 1,...,j. Since akqj ~ 0 on T\Uj , sj/l ~ SJ!-11 ~ 11!1i on T\Uj • If
t E Uj , then

j-l
(Xkqj ~ 2H TI {(1 + II qi II)} "1 ~ "'/3,

i~l

while S)/-1) ~ Sk, by inductive hypothesis, since the Uj are disjoint, and

by the uniform continuity of j, so that

s~) ~ J(tp+j) + " 0::; li!11

on Uj , and thus on all of T itself by the above. Moreover, if h > j, then
8)/-11 ~ Sk on Uk , by the inductive hypothesis, so that s)/) ~ SI<; on Uk also.
On the other hand,

s~) ~ -,-11111 + (n - j - 1)((1111 - I min(j)l)ln :;;:

as above, which implies II sj/) II ~ 11111. Finally

III - s~) II ~ II! - S~-1) II + lXI, II qj II

~ (1 + II qj IDiI! - S~-1) Ii
j

~ 2 j n{(1 + /I q; ID}llf - Sk Ii·
i~1

We now take N = max[N1 , N6 ], and let mli; + s£n-P1. Then, for all k :;;: N,
mk E M k ,mli;(ti ) = l(t;) for i = 1,... , p + (n - p) = n,

/I ml<;J) ~ l)fll,
and with

n-p

II! - ml<; II ~ 2n -
p n {(I + II qi II)}II! - SI<; II ~ C6[kI2]((llfli - ])1/2)

i~1

n-p

C = C12n
-

p n {(I + II q; II)}·
i~1

Case IV: q = n. Let h =-fand apply Case II.

Case V: 0 < q < n, p = O. Let h = -f and apply Case III.

Case VI: 0 < p < n, 0 < q < n. Without loss of generality, suppose
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that/eli) = Ilfll for i = 1,...,p, and that/eli) = -llfll for i = P + 1, ... , p + q.
We use the auxiliary function g E C(T) defined by g = (l\f1\ +1)1/2. Since

g(li) = (21IfI01
/
2= II g II for i = 1,...,p

while
g(ti) = 0 for i = p + 2,... , p + q,

and
o < g(ti) < II g II for i = P + q + 1,... , n,

by Case III there exist C1 and N1such that for every k ? N1there is an Sk E M k
for which sit;) = g(ti) (i = 1,..., n), [I Sk II = II g II, and II g - Sk II :;::;;;
C10[k/2l«11 g II - g)1/2). Let N = max[N3 , 2N1] + 1, and suppose k ? N.
Let m2k = Sk2 -llfll· Then m2k E M 2k , m2k(t;) = ([If II + f(t;» - Ilf\1 = f(t;)
(i = 1,... , n) and II m2k II :;::;;; Ilfll, since 0 ~ Sk2 ~ 2 Ilfll implies -llfll:;::;;;
Sk2 -llfll :;::;;; Ilfll. Finally

Ilf - m2k II = II(g2 -llflO - (Sk2 -llflOII :;::;;; II g + Sk 1111 g - Sk II
:;::;;; 2(211/101/2C1o[k/2]((I1 g II - g)1/2).

If g E M k , thenfE M k , and done. Otherwise,

C10[k/2]«([1 g II - g)1/2) = C1o[k/2l«(21Ifll)1/2 - Cllfll +1)1/2)1/2),

and take C = 2(21IfI01/2C1.
Using the auxiliary function g = Cllf[1 - f)1/2, we get the estimate

C1o[k/2](ClI g II - g)1/2) ~ C10[k/2]«(2 IIf101/2 - (11fll - f)1/2)1/2).

Taking the minimum of these two estimates, and finishing as in Case II,
the result follows. Q.E.D.

In particular, on era, b] with M k = Pk polynomials of degree k, in which
setting we may apply the classical Jackson Theorem [12] to get the estimate
SkU) :;::;;; 12(1 + (b - a)j2)wtCk-1) for k = 1, 2,... , our principle theorem
reduces to the following:

if I f(x;)! < Ilfll (i = 1,... , n),
if Il(xi) [ < Ilfll or f(xi) = a Ilfll,

i = 1,... , n,
otherwise,

THEOREM 4.8. Suppose fE era, b], {Xi}~=l C [a, b], and u a constant,
u = ±1. Then there exist C and N so thatfor all k ? N there is a PI< E Pkfor
which

(1) Pk(Xi) = f(xi) (i = 1,... , n),

(2) II Pk II = Ilfll,

!

CWf(k-1),

(3) Ilf - Pk II ~ Cw}/2(k-
1
),

Cw}!4(k-1),

and hence Ilf - PI< II :;::;;; Cwy4(k-1).
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Proof We have the estimates

0k(f) ~ 12(1 + (b - a)/2) wlk-I ),

8[1,/2](01/11 ±J)l/2) ~ 12(1 + (b - a)/2) w<ilfli±f)1/2([k/2]-1)

~ 24(1 + b - a)/2w~p+f(k-l)
ilil-

~ 24(1 + (b - a)/2) w;/2(k-1),
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O[kI4J«(2 i!/I11/2) - 01/11 ±Jl/2)1/2) ~ 48(1 + (b - a)/2) wf~ffIIl1/2_<i!fii±fll/~(k-I)

~ 48(1 + (b - a)/2) w~~~!±f)1/2(k-l)

~ 48(1 + b - a)/2)w}/4(k-1).

Hence the result follows immediately from Theorem 4.7. Q.E.D.

Clearly, the theorem is valid if the ex are replaced by any x;* in the span
of {ex: ,... , ex). Hence '

THEOREM 4.9. Suppose IE C[a, b], {Xi}Y=l C [a, bJ, and Yj* = :L7~1 aiex,
j = 1,... , m. Then there exist C and N such that k ;?: N implies there is'a
Pk E Pklor which

(1) yj*(Pk) = Yj*(f) (j = 1,... , m),

(2) !/Pk II = lilli,
(3) - Pk II ~ Cw;/4(k-1).

In Theorem 4.8 we considered arbitrary finite linear combinations of point
evaluations on C[a, b]. We show in Example 4.9 below that we cannot
consider arbitrary infinite linear combinations of point evaluations, however.
Example 4.9 also shows that a result obtained by Lambert [10] is best possible
in that given anyIE C[a, b] which attains its norm infinitely often, there exists
a bounded linear functional for which one does not have SAIN holding.

Example 4.9. Suppose fE C[a, b]\,go attains its norm at the countably
infinite number of points {Xi}~O C [a, b). Let (ai) E Ci be such that
sgn(ai) = sgn(f(xi» for all i. Let y* = :L~=o aiex . Then II Ii = L::o I ai I =
li(ai)lic

1
< 00, so that y* is a bounded linear functional on qa, b]. Also,

y*(f) = :L:o ai sgn(ai)lIfll = II y* IIlIfll· But, if P E,go is any polynomial
for which II P II ~ lifll, theny*( p) < II y* 1111/11, unless sgn(ai) = ()" is constant,
a = ±l and p = a Ilfll. Hence one does not have SAIN.

Remark 4.10. We observe that if we take T = Tl the unit circle and
Mil; = T k , trigonometric polynomials of degree k, we have analogous
results to Theorems 4.8 and 4.9, the statements being identical except for
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replacing [a, b] by Tl and Pic by Tic, so that trigonometric approximation is
handled exactly as algebraic approximation.

Remark 4.11. In weak norm preservation, our approximating elements
satisfy the condition -llf\\ ::( mlc ::( Ilfll. Suppose one replaces weak norm
preservation by the condition a ::( mlc ::( b, where a ::(f::( b. On C[a, b]
with polynomials, it is trivial that the same estimates hold, as one need only
let g = f - (b + a)/2, apply Theorem 4.7 to get Pic' approximating g, and
let Pic = PIc' + (b + a)/2. However, if one replaces the constants a, b by
functions a(x), b(x), it is no longer a triviality but an interesting question
which has been considered by V. A. Smatkov [14].
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